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ABSTRACT
Cycling as a green transportation mode has been promoted by many

governments all over the world. As a result, constructing e�ective

bike lanes has become a crucial task for governments promoting

the cycling life style, as well-planned bike paths can reduce tra�c

congestion and decrease safety risks for both cyclists and motor ve-

hicle drivers. Unfortunately, existing trajectory mining approaches

for bike lane planning do not consider key realistic government

constraints: 1) budget limitations, 2) construction convenience, and

3) bike lane utilization.

In this paper, we propose a data-driven approach to develop

bike lane construction plans based on large-scale real world bike

trajectory data. We enforce these constraints to formulate our

problem and introduce a �exible objective function to tune the

bene�t between coverage of the number of users and the length of

their trajectories. We prove the NP-hardness of the problem and

propose greedy-based heuristics to address it. Finally, we deploy

our system on Microso� Azure, providing extensive experiments

and case studies to demonstrate the e�ectiveness of our approach.
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Figure 1: Motivating Examples.

1 INTRODUCTION
Cycling as a commonly used urban transit mode for daily com-

mute has been promoted by multiple governments all over the

world [1, 40] for several reasons: 1) it is an a�ordable and

environment-friendly transportation mode for users; 2) it reduces

road tra�c congestion; and 3) it is a healthy lifestyle [31]. As a

result, building e�ective bike lanes, demonstrated in Figure 1a, be-

comes a vital task for governments to promote the cycling lifestyle.

Well planned & implemented bike lanes not only make cycling

easier, but also reduce the safety risks for both cyclists and drivers

of motor vehicles [30].

Traditional approaches to planning bike lanes in a city rely

mainly on empirical experience and surveys [12, 18, 32]. With

widespread availability of GPS embedded devices, more data-driven

approaches on planning bike lanes have emerged, e.g., [10, 11, 19].

However, existing works [10, 11, 19] merely focus on summarizing

commonalities of bike trajectory data while ignoring the realistic

constraints and requirements faced by the government:

• Budget Limitations. �ere are costs to realizing a bike

lane on a road segment, which may include: 1) the space for

creating bike lanes; and 2) the price of building bike lane

railing, and painting signs (demonstrated in Figure 1(a)).

Unfortunately, governments o�en have limited budgets.

• Construction Convenience. To implement the bike

lanes, construction teams need to be dispatched to con-

struction zones, with the number of teams required also

being a hard constraint. For the sake of ease of manage-

ment, the government would like to avoid spreading teams

out to construction zones in far reaching locations (e.g., red

lines in Figure 1(b) highlights the top-100 segments with

the most bike trajectories), and prefer to have them clus-

tered, i.e., as a limited number of connected components

in the road network.
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Figure 2: �e Mobike Example.

• Bike Lane Utilization. As a public service, from the gov-

ernment’s point of view, the objective of building bike lanes

is to increase the usability for more bikers and cover more

possible routes.

To incorporate these real world constraints, in this paper, we

propose a data-driven approach for planning the bike lanes based

on the massive number of trajectories collected from Mobike
1

users. Mobike is a fully station-less bike-sharing system currently

deployed in many large cities in China. It is the world’s largest

bike operator, and recently made Shanghai the world’s largest bike-

share city. Compared to the traditional station-based bike sharing

system, trajectories generated by Mobike users have two distinctive

advantages in tackling the bike lane planning problem:

• Realistic TravelDemands. Unlike many existing station-

based bike sharing systems, which require the users to pick

up and drop o� bikes from designated stations, Mobike

o�ers a more �exible system, where the users can pick up

and drop o� their bikes at arbitrary locations (Figure 2(a)).

As a result, the trajectories of Mobike users re�ect actual

urban travel demands.

• Rich Travel Information. A 3G communication compo-

nent and a GPS module are embedded on the lock system

in Mobike (demonstrated in Figure 2(b)), which enables

the users to �nd bikes with their phones. It also keeps the

track of the exact route traversed by the users (Figure 2(c)),

while the traditional station-based bike sharing system can

only provide the check-in/out information.

In this paper, we design, implement and deploy a data-driven bike

lane planning system on Microso� Azure, which not only leverages

the massive bike trajectories generated by thousands of Mobike

users, but also ful�lls the constraints and objectives requested by the

government. �e proposed system contains two main components:

1) Pre-Processing, which pre-processes the trajectories from the

Mobike user and maps them on the road network; and 2) Bike
Lane Planning, which takes the user’s input (i.e., requirements from

the government) and provides bike lane suggestions. �e main

contributions are summarized as follows:

•We formulate the bike lane planning problem by considering

various construction constraints, and propose a �exible tuning

parameter to characterize the design trade-o� between the number

of covered users and the length of the continuously covered bike

trips. �e problem proves to be NP-hard.

1
h�ps://en.wikipedia.org/wiki/Mobike

•We propose a greedy network expansion algorithm, which pro-

vides a scalable and approximate solution to the data-driven bike

lane planning problem. To achieve a be�er e�ectiveness, we also

propose two di�erent approaches to initialize the algorithm, which

work well for low and high budget scenarios, respectively.

• We evaluate the proposed algorithms extensively over one

month Mobike trajectory data (i.e., from 9/1/2016 - 9/30/2016) from

the City of Shanghai. We also provide an extensive data analysis

and discover many useful insights. Moreover, on-�eld case stud-

ies are conducted to evaluate the e�ectiveness of our bike lane

recommendations.

•An online system with the real dataset is deployed and available

on Microso� Azure [2]. Finally, we collect the feedback from the

government o�cials, from which our system received very positive

reviews.

�e rest of the paper is organized as follows: Section 2 describes

the problem de�nition and the system overview. Section 3 presents

the pre-processing module. Bike lane planning module is presented

in Section 4. Experiments and case studies are given in Section 5.

Section 6 presents the system deployment details and the expert

reviews. Related works are summarized in Section 7. Section 8

concludes the paper.

2 OVERVIEW
In this section, we model and de�ne the bike lane planning problem,

and outline our solution framework.

2.1 Problem De�nition
Given a road network graph G = (V ,E) (where a vertex set V
represents intersections and an edge set E = {e} represents all

relevant road segments, our data-driven bike lane planning problem

aims to discover a subset of edges E ′ ⊆ E, that follows three criteria:

(i) construction budget constraint, (ii) connectivity constraint, (iii)

maximum usage bene�t.

Construction budget constraint. �ere is a monetary cost ei .c
associated with each road segment ei , to convert a road segment

into a bike lane (e.g., building the railings and clearing the space).

On the other hand, the government has an overall budget con-

straint B to building bike lanes, and the total cost of the bike lane

construction cannot exceed the overall construction budget B, as

highlighted in eq.(1) below.∑
ei ∈E′

ei .c ≤ B. (1)

Connectivity constraint. As has been outlined in the introduc-

tion section, for the construction and management convenience,

the government prefers to deploy bike lanes with up to k connected

components (e.g., to be assigned to k construction teams). �e

following inequality eq.(2) re�ects such a constraint:

C(E ′) ≤ k, (2)

where C(E ′) denotes the operator that counts the number of con-

nected components from an edge set E ′.
Maximum usage bene�t. �e goal here is to maximize overall

usage of deployed bike lanes, which should 1) facilitate as many
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Figure 3: Motivation of Trajectory Score Function.

users as possible, and 2) cover more continuous road segments along

their trip routes. Note that continuous road coverage in bike lane

planning is crucial, as it increases the users’ quality of experience

(QoE). For example, a bike travels on a path (i.e., e1 → e2 → e3),

shown as blue do�ed lines in Figure 3(a)). �ough the two planned

bike lanes (Figure 3(b) & (c)) cover the same lengths of the trajectory,

Lane Plan 2 in Figure 3(c) is preferred by users as it provides a longer

continuous path, while the trajectory coverage of Lane Plan 1 in

Figure 3(b) is broken into two disconnected segments s1 & s2.

Unfortunately, these two objectives (i.e., serving more users vs.

covering longer and continuous trips) usually con�ict with each

other, as user trips usually have di�erent destinations. Hence, we

propose a �exible score function for decision makers to adjust their

preference between the two objectives for a trajectory tri :

tri .д =
∑
sj ∈Si

α
sj .`

min(e .`) ×
sj .`

min(e .`) ,α ≥ 1. (3)

where tri .д is the bene�cial score for trajectory tri , Si is the set of

continuous road segments that overlap with trajectory tri in the

path plan E ′, sj is one continuous road segments in set Si ,
sj .`

min(e .`)
normalizes the length of the continuous road segment sj ∈ Si
(wheremin(e .`) is the minimum length of the road segment in the

network), with the guarantee that its value is no less than 1, and

α is the tuning parameter to set the preference on the number of

covered users vs the length of continuous coverage. �e reason

for designing a score function using the exponential function of

the normalized length is that when α > 1, the continuous segment

gets a higher score. Otherwise, without the exponential function

α
sj .`

min(e .`) , Lane Plan 1 and Lane Plan 2 will have the same score. A

smaller α indicates that more preference is given to the amount

of user coverage (e.g., α = 1 means that we do not care about the

continuous length coverage, and two path plans in Figure 3 have

the same bene�cial score), while a larger α means that the longer

continuous length coverage of the user trips is preferred.

�en, the overall bene�cial score of a edge set (or a bike lane

plan) E ′.д can be calculated by aggregating the scores of all the

trajectories Tr that overlap with road segment set E ′:

E ′.д =
∑

tri ∈T r&tri∩E′,∅
tri .д. (4)

We now formalize our bike lane planning problem as follows.

Problem de�nition. Given a set of trajectories Tr , a road network
G = (V ,E) with a cost value ei .c on each edge ei , a tuning parameter
α , a value k , and a total construction budget B, we want to �nd a set
of edges E ′ ⊆ E, which maximizes the total bene�cial score д, and
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Figure 4: An Overview of System.

ful�lls two constraints: 1) the total budget is no more than B; and
2) the number of connected components in E ′ is less than k . Formally,

it is represented as an integer programming problem:

max: E ′.д, s.t.:

∑
ei ∈E′

ei .c ≤ B, C(E ′) ≤ k . (5)

Such a problem of �nding k budget constrained connected com-

ponents with maximum bene�cial score is NP-hard as proven in

Lemma 1 below.

Lemma 1 (NP-difficulty). Finding k budget constrained con-
nected components with maximal bene�cial score is NP-hard.

Proof. We reduce our problem of �nding k budget constrained

connected components with a maximum bene�cial score from the

0 − 1 Knapsack problem. We can view each road segment ei ∈ E
as an item, with an item size (i.e., construction cost), and an item

pro�t (e.g., a bene�cial score contribution). �e set E ′ of selected

road segments is viewed as a knapsack, with a �xed size B (i.e.,

total budget constraint). If we set α = 1, i.e., we do not care about

the continuous length coverage, and k = |E |, i.e., the maximum

number of disconnected components is unbounded. Our problem

boils down to a 0 − 1 Knapsack problem.

�us, for any instance of the decision version of the 0 − 1 Knap-

sack problem, we can �nd an instance of the decision version of the

problem of �nding k budget constrained connected components

with the maximum bene�cial score by se�ing k = |E | and α = 1,

and their answers are the same. �us, the decision version of the

0 − 1 Knapsack problem is reducible to the decision version of our

problem, which completes the proof of NP-di�culty. �

Given it is an NP-hard problem, we develop a greedy-algorithm

based heuristic to tackle the issue.

2.2 System Framework
Figure 4 gives an overview of our system, which consists of two

main components:

Pre-Processing. �is component takes the bike trajectories and

the road network and performs three main tasks: 1) Trajectory
Data Parsing, which removes the outlier GPS points; 2) Trajec-
tory Map-Matching, which projects the bike trajectories onto the

corresponding road segment; and 3) Inverted Index Construction,
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Figure 5: Spatial Insights of Mobike Data.

which builds an index to speed up the lookup process of retrieving

trajectories based on road segment IDs (detailed in Section 3).

Bike Lane Planning. �is component takes the user’s parameters,

e.g., the total budget, number of connected components, and the

α value, and outputs the bike lane recommendation results. If the

user is satis�ed by the results, parameters can be tuned to get a

new set of recommendations. We propose two di�erent approaches

for bike lane recommendation (detailed in Section 4).

3 PRE-PROCESSING

Pre-processing takes the road network and the trajectories as

input, and performs the following three tasks to prepare the data

for further processing:

Trajectory Parsing. �is step cleans the raw trajectories from

Mobike users by �ltering the noisy GPS points with a heuristic-

based outlier detection method [37].

Trajectory Map-Matching. In this step, the system maps each

GPS point onto the corresponding road segment. We use a revised

version of an interactive-voting based map matching algorithm [36],

where the speed constraint of the road segments is not used, to

perform map-matching.

Inverted Index Construction. In this step, the system builds

the inverted index for each road segment, recording the trajectory

IDs passing it. In this way, we can speed up the road segment-

based trajectory look-up. �e index construction process is done in

parallel on Microso� Azure [4].

4 BIKE LANE PLANNING

In this section, we �rst describe the overall framework of the

greedy network expansion algorithm for planning bike lanes. A�er

that, we describe the di�erent approaches to initialize the network

expansion.

4.1 Greedy Network Expansion Framework
Main Idea. �e intuition of the greedy network expansion algo-

rithm is to expand a set of k starting road segments in the network.

Algorithm 1 Framework of Greedy Network Expansion

Input: Road Network G = (V , E), Inverted index I , Trajectory Dataset

T r , Total budget B , tuning parameter α , and a value k .

Output: Result road segment set E′.
//Stage 1: Initialization

1: Road Segment Set E′ ← k starting road segments

2: Candidate set C ← adjacent road segments of E′

3: Remaining Budget B ← B −∑ei ∈E′ ei .c
//Stage 2: Network Expansion

4: while Budget B > 0 do
5: MaxGain ← 0; enext ← ∅
6: for ei ∈ Candidate set C do
7: if ei .c < B then
8: Retrieve trajectories T r ′ from I based on E′ ∪ ei
9: Calculate bene�cial score di�erence per cost ∆д = д′−д

ei .c
10: if MaxGain < ∆д then
11: MaxGain = ∆д; enext ← ei
12: E′ ← E′ ∪ enext ; B ← B − enext .c
13: Candidate Set C ← C∪ none-selected adjacent edges of enext

//Stage 3: Termination
14: return E′

�is is inspired by the two key insights discovered in the dataset,

namely spatial hot spots and star-like mobility pa�erns:

Spatial hot spots. Figure 5(a) shows the two hot spots with the

highest number of trip starting locations, where the upper side

re�ects a subway terminal station (i.e., Jinyun Road Station of

Subway Line 13), and the lower side illustrates a very popular

shopping mall (i.e., Bailian Zhonghuan Commerce Plaza). �e

intuition behind the observation is straightforward: although the

mall is very popular, it is not close to any subway stations, which

makes cycling the best option; similarly for the terminal station, the

fastest & most economic option to get home from there is cycling.

Star-like mobility pa�erns. We further investigate travel directions

around spatial hot spots, and we discover that the bike trips go

to di�erent destinations from the same starting location, just like

multiple edges with one shared end, namely, a star-like mobility

pa�ern, as demonstrated by the arrows in Figure 5(b).

Taking these observations into considerations, our greedy-based

bike lane planning algorithm extends the incremental network

expansion algorithm in road network, e.g., [3, 28]. �e algorithm

has three phases:

• Stage 1: Initialization. �e algorithm starts by selecting

k starting road segments. In this way, we can guarantee

that the �nal road segment recommendation produced by

the algorithm ful�lls the connectivity constraint, i.e., does

not generate more than k connected components.

• Stage 2: Network Expansion. In this stage, the algo-

rithm runs iteratively. In each iteration, the algorithm

selects the best road segment (i.e., with the highest the

bene�cial score gain per cost, which equivalents to the

ratio of item pro�t to size, in the classic 0 - 1 Knapsack

problem) to the result set E ′ and adds its none-selected

adjacent segments to the candidate set.
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Figure 6: Greedy Network Expansion Example.

• Stage 3: Termination. �e algorithm terminates when

budget limit B is met, and then returns the resulting road

segment set E ′ as the recommended bike lane plan.

Algorithm Design. Algorithm 1 gives the pseudo-code of our

greedy network expansion algorithm. In the initialization stage,
the algorithm �rst selects k starting road segments in the resulting

set E ′, puts all the adjacent road segments of the start segments in

candidate set C, and updates the budget value by subtracting the

total cost of the starting road segments (Line 1-3).

In each iteration of the network expansion stage (Line 5-13), the

algorithm checks each road segment ei in the candidate set C. If

the cost of the road segment is smaller than the remaining budget,

the algorithm retrieves all the trajectoriesTr that has been covered

by the road segment ei and the result road segment set E ′ (Line 8).

A�er all the covered trajectories are retrieved, we calculate an up-

dated bene�cial score д′ based on Equation 4. �en, we calculate

the corresponding bene�cial score gain per cost (Line 9). During

the process, we keep track of the road segment enext , which has

the maximum bene�cial score gain per cost in the iteration. enext is

inserted in to the resulting road segment set E ′, the remaining bud-

get is updated by subtracting the cost of the selected road segment

enext .c . Road segment enext is removed from candidate set C, and

all of its none-selected adjacent segments of enext are inserted in

the candidate set C for further iterations (Line 10- 13).

Finally, when all the budget is used up, the algorithm terminates,

and the road segment set E ′ is returned as the recommended plan.

Example. Figure 6 gives an example of the greedy network ex-

pansion algorithm. In the initialization stage, two starting road

segments are selected (marked in red), and all of their adjacent

segments are inserted in the candidate set (marked in blue). Dur-

ing the network expansion stage, in the iteration, we calculate the

bene�cial score gain di�erence for each segment in the candidate

set (illustrated in Figure 6(a)), based on Equation 4. A�er that, we

divide the bene�cial score di�erence by the cost of each segment

and select the highest one to expand the network, which is e8 in our

example. �en, the adjacent segments of e8 are added as the new

candidates (i.e., e12 and e13 in Figure 6(c)). �e algorithm terminates

when the budget is used up.

(a)  Result of Top-k Initialization (b) Top-k Start Segments

Top 1
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Top 4

Top 3
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Jinyun Road 
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Major 

Residential Area

Shopping 
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Figure 7: Top-k Initialization Example.

Analysis. As demonstrated in the example, it is clear that the

performance of the �nal results E ′ is highly determined by the

selection of the starting road segments. As a consequence, �nding

an e�ective method to perform initialization becomes a vital task

in our greedy network expansion algorithm.

4.2 Top-k based Initialization
Main Idea. �e most straightforward method is Top-k Initialization,

which essentially selects the highest ranked k segments based on

the bene�cial score per cost (i.e.,
ei .д
ei .c ), as the starting segments

for network expansion. �e intuition behind this approach is that

these road segments usually represent the spatial hot spots, which

should always be included in the �nal result.

Example. Figure 7(a) gives an example result of greedy network

expansion with top-k based initialization, with k = 5. �e recom-

mended bike lanes are marked in red in the �gure, which form one

large set of connected components. �e reason the result contains

only one connected component, rather than �ve (i.e., k value) is

that the top-5 highest ranked segments are connected with each

other. Figure 7(b) is the detailed view of the boxed area in Fig-

ure 7(a), where the selected �ve starting road segments are marked

in green and blue, which form two groups (i.e., {Top 1, Top 2, Top

5} and {Top 3, Top 4}). �e �rst group contains the road segments

between a major residential area and nearby shopping malls/facto-

ries, while the second group contains the road segments near the

terminal station for subway Line 13. �e reason the top ranked

segments are usually connect to each other, is a large amount of

trajectories may share a lot of road segments, as they traverse from

or to the same location (e.g., a subway station or a shopping mall).

Analysis. �e top-k based initialization approach guarantees that

the algorithm will never miss any segment with the highest bene�-

cial score per cost. However, as most of the top-k ranked segments

are very close to each other, it can only expand with a much lower

number of connected components in the network, which limits the

search space in the candidate set and may miss some important

areas, especially when the budget B is large.

4.3 Spatial Clustering-based Initialization
In order to include more spatially diversi�ed starting locations in

the initialization stage and be more e�ective when the budget is

larger, we take advantage of spatial clustering techniques to select

the starting road segments.
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Figure 8: Moike Trajectory Data Distribution.

Main Idea. �e intuition behind the spatial clustering-based initial-
ization is from observing of the trajectory heat map (i.e., Figure 8),

which visually has some rough clusters over the space. In this way,

we can avoid the drawbacks of the top-k based initialization, which

has the starting segments connected to each other and limits the

search space. �is method has two main steps:

• Candidate Selection. In this step, we select a subset of

road segments with high ranks (e.g., top 1% ranked seg-

ments in our implementation based on the score per cost),

as the candidates for clustering.

• Spatial Clustering. In this step, the candidate road seg-

ments are clustered based on an agglomeration hierarchical

clustering method, e.g., [33]. A�er that, the highest ranked

road segment in each cluster is selected as the starting

segments.

�e reason for selecting a subset of road segments for clustering

is to remove the road segments that will never be in the �nal result

and reduce computational cost. �e hierarchical-based clustering

method is employed in our system, as it does not need to tune the

clustering parameters (e.g., in DBSCAN [9]) and it always generates

stable results (unlike it is in K Means [14]). �us, it is more intuitive

for government users.

Example. Figure 9 gives an example of the execution results of

spatial clustering-based initialization, where k = 5. In the �rst step,

we compute the clusters generated by our algorithm, i.e., Figure 9(a).

A�er that, the highest ranked road segments are selected as the

starting segments, which are the black segments in Figure 9(b). It is

interesting to note that four of the starting segments are at subway

stations. �e recommended paths actually cover the neighborhood

of six subway stations, as illustrated in the �gure.

Analysis. Compared to the results generated by the top-k initial-

ization method, spatial clustering based initialization clearly has

(a) Results of Hierarchical based Spatial 

Clustering

(b) Results of Spatial Clustering based Greedy 

Network Expansion

Starting 

Segments

Starting 

Segments

Starting 

Segments

Figure 9: Spatial Clustering based Initialization.

be�er diversity and coverage. �e main reason is that a�er the spa-

tial clustering step, the starting segments are no longer connected

with each other. As we will show in our experiments, with more

budgets, the spatial clustering-based initialization method is more

e�ective.

5 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate the

e�ectiveness of our system. We �rst describe the dataset used in the

paper. �en, we provide a detailed analysis on the mobility statistics

of the Mobike trajectories. A�er that, we provide experiment results

with di�erent parameters. Finally, we present a set of real case

studies to demonstrate the e�ectiveness of our system.

5.1 Datasets
Road Network. We use the road network of Shanghai, China from

Bing Map, which contains 333, 766 intersections and 440, 922 road

segments.

Mobike Trajectories. Each Mobike trajectory contains a bike ID,

a user ID, a temporal range of the trajectory, a pair of start/end

locations, and a sequence of intermediate GPS points.

�e Mobike dataset is collected in one month (i.e., 09/01/ 2016 -

09/30/2016) from the city of Shanghai. (Figure 8 gives an overview

of the spatial distribution of GPS locations). �e dataset contains

13,063 unique users, 3,971 bikes, and 230,303 trajectories (with a

total of 18,039,283 unique GPS points).

5.2 Mobility Statistics of Mobike Data
Trip Length Distribution. Figure 10(a) summarizes the trip

lengths distribution of the Mobike users. From the �gure, it is

clear that the majority of the trajectories are relatively short, i.e.,

more than 70% of the trips are shorter than 2 km, as people primar-

ily take bikes for shorter trips. �e observation is consistent with

the assumption that shared bike service is the solution for the “last

mile problem” in public transportation systems [7].

Trip Duration Distribution. Figure 10(b) gives the trajectory

duration distribution, where the majority of the trips are within

30 mins. �is is because: 1) most of the trips are less than 2 km,

which should be completed within 15 mins, and 2) the pricing plan
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Figure 10: Mobike Trip Characteristics.
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Figure 11: Temporal Imbalance Example of Mobike Trips.

of Mobike charges a user one RMB per 30 mins (we also notice a

sudden drop around the 30 min mark).

Trip Temporal Distribution. Figure 10(c) illustrates the distribu-

tion of the trip start time. It is obvious that there are two usage

peaks, i.e., the morning/evening rush hours. It is interesting to see

there is still a small amount of usage late at night, i.e., 10:00PM -

3:00AM, which is generated by the overtime workers.

Road Traversal Distribution. Figure 10(d) depicts the road seg-

ment distribution with respect to the number of traversed trajecto-

ries (in semi-log scale). It is obvious that most road segments are

covered by less than 100 trajectories, which echoes that bikers have

destinations all over the urban area. On the other hand, there are

over 2,000 road segments, with more than 1,000 trajectories, which

validate the necessity of planning e�ective bike lanes.

Temporal Imbalance. Figure 11 gives the Mobike trajectory start-

ing locations at di�erent time periods, which exhibits signi�cant
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Figure 12: E�ectiveness Evaluation.

temporal imbalance. For example, in the early morning, i.e., Fig-

ure 11(a), more trajectories start at the residential areas. However,

around 08:00 a.m. to 10:00 a.m, more trips start at the subway sta-

tion (as Figure 11(b)). A�er we analyze their �nal destinations, it is

clear that in the early morning, people who live nearby ride bikes

to the subway stations for work. �en, a�er one hour, more people

arrive at the subway station and ride to nearby malls and o�ces.

5.3 E�ectiveness Studies
In this subsection, we study the e�ects of di�erent parameters in our

system. Unless mentioned explicitly, the default parameters used

in the experiments are: k = 5, total construction budget B = 30KM
(we use the length of the segment as the cost ei .c , as the cost and

the length are highly correlated), and α = 1.

Di�erent k Values. Figure 12(a) gives the total bene�cial scores

E ′.д of choosing di�erent numbers of components (i.e., k values).

As a result, we have the following insight: 1) in most cases, the

spatial clustering-based initialization method gets a higher score;

2) the scores for Top-k method stays the same for k < 7, as all

the top-7 segments are connected; 3) when k value is small, two

methods are similar. �is is because in these cases the starting

segments of clustering results are the same as the top-k .

Di�erent Total Budgets. Figure 12(b) illustrates the total scores

with di�erent total budgets, from 10 KM to 50 KM. From the �gure,

we make the following observations: 1) the spatial clustering-based

initialization method performs be�er when the budget is larger.

2) when the budget is small, top-k method is be�er than spatial

clustering based method. �is is because, when the budget is small,

the best strategy may be expanding the segment with the most

number of trajectories (essentially the intuition of top-k method).

However, when the budget is large, the segments with high scores

per cost around the top-1 or top-2 ranked segments can be fully

covered (as most bike trajectories is less than 2 KM). At this time,

a more e�ective way should include the segments around other

spatial hot spots, rather than still expanding around that top-1 or

top-2 ranked segments.

Di�erent α Values. Figure 13 provides the results with di�erent

α se�ings, with the spatial clustering based method, where the

red lines are recommended paths and the black dots are their start

segments. It is interesting that, when α is large, most of the network

expansions happened in one connected component. Moreover, with
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(a) Hewang Road (Local Road)
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Figure 14: A Real Case Study Near Jinyun Road Station.

(a) Results with α=1

(b) Results with α=1.03

Start 

Segments

Start 

Segments

Figure 13: E�ects of α Values.

a higher α , the result of the expansion goes further on some major

roads. �e reason behind these two phenomena is that, when α is

large, higher bene�cial scores are given for covering more portion

of the bike trajectories.

5.4 Case Study
To be�er understand the e�ectiveness of our bike lane recommen-

dations, we conduct a �eld case study. We choose to visit the area

near Jinyun Road subway station, as this area appears in all of our

recommendations, regardless of the parameters.

Figure 14(c) gives an overview of the overall POI distribution of

the area: 1) Jinyun Road is the terminal station of subway line 13,

2) there is a very large shopping mall (Shanghai Jiangqiao Wanda

Plaza) next to the subway station; and 3) around the subway station,

there are many populated residential areas within a 2 km radius,

marked as the blue icons on the �gure. As a result, cycling is

the most convenient way for the residents in this area to go to

the subway station or the shopping mall, which explains this area

having the highest bike usage density in our dataset.

When we arrive at the Jinyun Road station, we discover that the

government has built a few designated bike lanes. Based on our

observation, the government plans these bike lanes with a simple

strategy: building designated bike lanes for all major roads, and

painting bike lanes for the most of the local roads.

For example, the major roads in the �gure have designated bike

lanes, which are the Jinshajiang West Road (i.e., highlighted in

blue) and Huajiang Road (i.e., highlighted in green), as shown

in our photos: (Figure 14(b) for Huajiang Road and Figure 14(d)

for Jinshajiang West Road). �ese observations demonstrate the

e�ectiveness of our system, as all of these major roads are included

in our bike lane recommendation results.

On the other hand, there are no designated bike lane on lo-

cal roads, e.g., Hewang Road (Figure 14(a)) and Shahe Road (Fig-

ure 14(e)). However, we observe that there is also extensive bike

usage on these roads, as they are the paths to highly populated

residential areas. Although there are painted bike lanes on the road,

the cycling conditions are pre�y bad. In Figure 14(a), the bike users

have to ride on the sidewalk, as the original bike lane is taken by

a parked car. As a consequence, it not only makes the cycling ex-

perience much worse, but also is potentially dangerous for people

walking or running on the sidewalk. In the other example, i.e.,

Figure 14(e), at Shahe Road, the bike users are forced to ride on the

main lane of the road, as all the space of the biking path is taken

by cars, which may lead to tra�c accidents.

As a result, based on our analysis and observation, we conclude

that the government’s current strategy, i.e., building bike lanes

only on major roads, is insu�cient. With the real bike trajectories

and data-driven analysis, we propose that the cycling conditions

in these local road segments in our recommendation should be

improved. For example, the government should build designated

bike lanes, replace o�-street parking spaces with (underground)

parking garages, and enforce be�er management of illegal parking

violations.

6 SYSTEM DEPLOYMENT & EXPERT REVIEW

In this section, we �rst describe the details of our deployed

system on Microso� Azure. A�er that, expert feedback from gov-

ernment o�cials are presented and summarized.

6.1 System Implementation
Our bike lane planning system is publicly available online [2],

where the website user interface is implemented using bootstrap,

C#, Asp.NET and Bing Map V8 API, and the system is deployed

on Microso� Azure. Figure 15 is an example of the system inter-

face. �e system allows users to interact with it using di�erent

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1384



Planning Bike Lanes based on Sharing-Bikes’ Trajectories KDD’17, , August 13–17, 2017, Halifax, NS, Canada.

Figure 15: System Interface.

parameters, and get bike lane construction recommendations in

a very short period of time. �e interface contains the following

components:

Parameters. �is section of the interface allows users to input the

parameters, such as the maximum number of connected compo-

nents (or k value), total budget (we consider the length as the cost),

and the α value (with a slider). �ere are two main bu�ons on this

area: 1) Cluster, which shows the results of spatial clustering, a�er

a user inputs the k value; and 2) Compute, which will generate the

path recommendation results, with all the given parameters.

Result. In this section, a table is used to show the algorithm results,

including: 1) the number of road segments in the recommendation,

2) the total score based on the α and the recommended paths, and

3) total execution time of the task.

Initialization Segments. In this section, we show the list of the

road segments, which are used to initialize the greedy network
expansion. For each road segment, we present information, which

includes: road segment ID, road name, center position (with latitude

and longitude) and the length in km.

MainMap View. In the upper right section, there is our main map

view. In this view, it displays the spatial clusters, distinguished

using di�erent colors, when the user inputs a value k and presses

the Cluster bu�on. It will also visualize bike lane recommendation

results, when the user inputs all the parameters and clicks Compute.
�e starting road segments are illustrated as the purple dots and

the recommended road segments are in red poly-lines.

6.2 Expert Review
We presented our system to the government o�cials from Xuhui

District, Shanghai, and collected their feedback.

Overall, they highly appreciated our data-driven bike path plan-

ning approach and found the system is very useful to help their

planning. One of the o�cials commended: “ �e idea of using the

real sharing bike trajectories for planning the bike lanes is very

reasonable. �e data mining results from the system will serve as a

very solid foundation for our urban planners to build more e�ective

bike lanes in Shanghai”.

7 RELATEDWORK

In this section, we summarize the related works in three main

areas: 1) data-driven urban planning, 2) trajectory data mining, and

3) traditional bike lane planning methods.

Data-Driven Urban Planning. With the availability of massive

amounts mobility data from users, vehicles and public transporta-

tion systems, urban computing techniques have become more and

more popular in many urban planning tasks, as the massive mobil-

ity data re�ects real travel demands in the physical world [38]. For

example, [39] mines pa�erns in taxi trajectories to suggest road

constructions and public transportation projects. [35] infers dif-

ferent function zones in a city based on tra�c pa�erns and POI

distribution. [5, 17] identify potential tra�c pa�erns and anomalies

in the city based on multiple mobility datasets. In this paper, we

focus on providing a data-driven approach to �nd a more e�ective

and economic way for bike lane planning.

Trajectory Data Mining. �e bike lane planning problem is re-

lated to the trajectory data mining [6, 16, 21, 22, 24, 26, 27, 34].

Many systems have been proposed to discover frequently used

routes based on massive trajectory data, e.g., [6, 15, 16, 21, 26, 27].

�ere are also some projects on clustering/summarizing trajectories

on the road network [13, 20], which help urban planners to know

the popular routes and improve public transportation system. �e

closest projects on bike trajectory mining are [10, 11, 19], which

focus on summarizing the trajectory commonality and �nd out the

K-Primary Corridors for bike lanes. However, all of these works can

not be directly used for bike lane planning, as they fail to consider

the realistic budget and connectivity constraints.

Traditional Bike Lane Planning. Traditional bike lane planning

in a city is mainly studied in the transportation domain, and relies

heavily on the empirical experience, e.g., [8, 12]. To evaluate the

necessity of building bike lanes, [29, 32] provide some high level

suggestions based on public surveys and the geographical statistics,

such as the road network and POI distributions. �ere have been

some a�empts [18] to systematically discover factors for actual

bike route choices based on survey data. Recently, there have also

been some works on tra�c predication and route suggestion based

on the station-based bike-sharing systems, e.g., [23, 25].

8 CONCLUSION

In this paper, we propose a data driven approach to plan bike

lanes based on the real bike trajectories collected from Mobike (a

major station-less bike sharing system) in the City of Shanghai.

Our system can address the bike lanes planning problem in a more

realistic way, considering the constraints and requirements from

urban planners’ perspective: 1) budget limitations, 2) construction

convenience, and 3) bike lane utilization. We also propose a �exible

bene�cial score function to adjust preferences between the number

of covered users and the length of covered trips. �e formulated
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problem is proven to be NP-hard, thus we propose a greedy network
expansion algorithm with two di�erent initialization methods: top-k
based and spatial clustering.

We perform extensive experiments on a large scale Mobike data

and demonstrate the e�ectiveness of our proposed bike lane plan-

ning framework, where interesting trade-o� phenomena are ob-

served namely the top-k based (resp. spatial clustering based) ini-

tialization approach works well with low (resp. high) construction

budgets. We also conduct an on-�eld case study based on our path

recommendation results, and present many important insights to

improve cycling convenience in a given area. A demonstration

system is deployed on Microso� Azure for public use, and the ex-

pert feedback from the government o�cials from Xuhui District,

Shanghai, con�rms the e�ectiveness and usability of our system.

Finally, in future work, we plan to use the parallel computing

framework in Microso� Azure to improve system response time

to work more e�ciently with larger trajectory datasets. Also, we

would like to further explore the interactive planning process to

incorporate more human intelligence.
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